Advertisement

An object of size 5 cm is placed at a distance of 25 cm from the pole of a concave mirror of radius of curvature 30 cm. Calculate the distance and size of the image so formed. What will be the nature of the image?


We are given a concave mirror. 
Here, 
Object size, h = + 5.0 cm
Object distance, u = - 25 cm
Radius of curvature,  R = - 30 cm     [R is -ve for a concave mirror] 

Therefore, 
Focal length,  f = R2 = -15 cm 

Now, using the mirror formula, 

                   1u+1v = 1f

we have,
                  1v = 1f-1u       = 1-15 - 1-25       = -5+375      = -275



i.e.,               v = -37.5 cm.

Magnification, m = h'h = -vu 

      Image size, h' = -v hu 

                                = -(-37.5 cm)(+5.0 cm)(-25 cm) = -7.5 cm.



As v is (-)ve, so a real, inverted image of height 7.5 cm is formed at a distance of 37.5 cm in front of the mirror.

1813 Views

Advertisement
An object, 4.0 cm in size, is placed at 25.0 cm in front of a concave mirror of focal length 15.0 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? Find the nature and the size of the image.

We are given a concave mirror.

Here,
Object size, h = + 4.0 cm
Object distance, u = -25.0 cm
Focal length, f = - 15.0 cm
Image distance, v = ?
Image size, h' = ? 

Now, using the mirror formula,  

                    1u+1v = 1f

                1v = 1f-1u       = 1-15-1-25      =-115+125 

                   1v = -5+375        = -275      v = -37.5 cm

The screen should be placed at a distance of 37.5 cm on the object side of the mirror, to obtain a sharp image of the object. 

Magnification, m = h'h = -vu 

Image size,
                   h' = -vhu    = -(-37.5 cm) (+4.0 cm)(-25 cm)     = -6.0 cm.     

The image formed is real, inverted (because h' is negative) and enlarged in size.

743 Views

An object 2 cm in size is placed 30 cm in front of a concave mirror of focal length 15 cm. At what distance from the mirror should a screen be placed in order to obtain a sharp image? What will be the nature and the size of the image formed? Draw a ray diagram to show the formation of the image in this case.

Here,   h = + 2 cm,   u = - 30 cm,   f = -15 cm
As               1 over straight u plus 1 over straight v space equals 1 over straight f
therefore        1 over straight v space equals space 1 over straight f minus 1 over straight u space equals space fraction numerator 1 over denominator negative 15 end fraction minus fraction numerator 1 over denominator negative 30 end fraction space equals space minus 1 over 30
or                                  straight v space equals space minus 30 space cm. space space space Ans. space
Thus, the screen should placed at 30 cm in front of the mirror so as to obtain the real image.
Magnification,  straight m space equals space fraction numerator straight h apostrophe over denominator straight h end fraction space equals space minus straight v over straight u
Image size,  h' = negative vh over straight u space equals space minus fraction numerator left parenthesis negative 30 right parenthesis space left parenthesis plus 2 right parenthesis over denominator left parenthesis negative 30 right parenthesis end fraction space equals space minus space 2 space cm
The image is real, inverted and of the same size as the object. The image formation is shown in the ray diagram given below.

Here,   h = + 2 cm,   u = - 30 cm,   f = -15 cmAs           ?


2537 Views

Define magnification for a spherical mirror. Write the expression for magnification for (i) concave mirror (ii) convex mirror. Express m in terms of u, v and f.

Linear magnification: The ratio of the height of the image to that of the object is called linear magnification or transverse magnification or just magnification. It is denoted by m.
straight m space equals space fraction numerator Height space of space image over denominator Height space of space object end fraction space equals space fraction numerator straight h apostrophe over denominator straight h end fraction
Linear magnification in terms of u and v
(a) For a concave mirror: Using carteisn sign convention, we find from the given fig, that 
A' B' = - h' (Downward image height)
AB = + h (Upward object height)
B'P = - v (Image distance on left)
BP = - u    (Object distance on left)


Linear magnification: The ratio of the height of the image to that of
From similar triangles A' B' P and ABP, we get
                                  fraction numerator straight A apostrophe straight B apostrophe over denominator AB end fraction space equals space fraction numerator straight B apostrophe straight P over denominator BP end fraction space space space or space space fraction numerator negative straight h apostrophe over denominator straight h end fraction space equals space fraction numerator negative straight v over denominator negative straight u end fraction

therefore                    straight m space equals space fraction numerator straight h apostrophe over denominator straight h end fraction space equals space minus straight v over straight u
 

(b) For a convex mirror: Using cartesian sign convention, we find from the given fig that

Linear magnification: The ratio of the height of the image to that of

A' B' = + h'    (Upward image height)
AB = + h    (Upward object height)
PB' = + v    (Image distance on right)
BP = - u    (Object distance on left)
From similar triangles A' B' P and ABP, we get
                             fraction numerator straight A apostrophe straight B apostrophe over denominator AB end fraction space equals fraction numerator PB apostrophe over denominator BP end fraction space space space or space space fraction numerator straight h apostrophe over denominator straight h end fraction space equals space fraction numerator straight v over denominator negative straight u end fraction

therefore              straight m space equals space fraction numerator straight h apostrophe over denominator straight h end fraction space equals space minus straight v over straight u
Linear magnification in terms of u and fi From mirror formula, we have
                           1 over straight v space equals space 1 over straight f space minus space 1 over straight u space equals space fraction numerator straight u minus straight f over denominator uf end fraction space space space or space space space straight u over straight v space equals space fraction numerator straight u minus straight f over denominator straight f end fraction
or                       straight m space equals space minus straight v over straight u space equals space fraction numerator straight f over denominator straight f minus straight u end fraction
Linear magnification in terms of v and f: Again, from mirror formula, we have
                                 1 over straight u space equals space 1 over straight f minus 1 over straight v space equals space fraction numerator straight v minus straight f over denominator vf end fraction space space space space or space space space straight v over straight u space equals space fraction numerator straight v minus straight f over denominator straight f end fraction
therefore                 straight m space equals space minus straight v over straight u space equals space fraction numerator straight f minus straight v over denominator straight f end fraction
Hence, for any spherical mirror, concave or convex, we have
box enclose straight m space equals space minus straight v over straight u space equals fraction numerator straight f over denominator straight f minus straight u end fraction space equals space fraction numerator straight f minus straight v over denominator straight f end fraction end enclose

1883 Views

A convex mirror used for rear-view on an automobile has a radius of curvature of 3.00 m. If a bus is located at 5.00 m from this mirror, find the position, nature and size of the image.  

Given, a convex mirror.

We have, 

Radius of curvature, R = + 3.00 m          [R is +ve for a convex mirro]
Object distance, u = - 5.00 m 
Image distance, v = ?
Height of the image, h'  = ? 

Therefore,
Focal length,  f = R2 = +3.00 m2 = + 1.50 m 

Using the mirror formula, 

                       1v+1u = 1f 

                    1v = 1f-1u       = +11.50-1(-5.00)       = 11.50+15.00

                            = 5.00+1.507.50 

                          v = +7.506.50  = + 1.15 m  

The image is formed at a distance of 1.15 m behind the mirror. 

Now, 
Magnification,  m = h'h = -vu  

                          = -1.15 m-5.00 m= + 0.23    

The image is virtual, erect and smaller in size by a factor of 0.23.

883 Views

Advertisement